

Background to nitrogen recovery by membranes

Industrial liquid side streams in TYPKI project

- Industrial waters are often in large volumes and low solute concentrations
- Nitrogen (N) concentration and recovery from liquid stream is the most feasible if it is a part of water purification
 - Concentrate needs to be deposited, thus nutrient recovery is a good option
- Recovery usually requires many steps when targeting to pure and sufficiently concentrated circular economy product
 - As deposition of impurities is costly, low volume matters
 → makes concentration and recovery more desirable
 - Foulant/scalant removal is needed for membrane concentration
 - Final concentration requires often additional technologies
 - If many steps are needed, recovery becomes easily costly
 - All streams need to be considered
- Potential of flue gases in N recovery is not well exploited

Ammonium from a mine effluent

- Goal: Minimise surface water intake, decrease the volume of N in liquid
- TYPKI result: Purified water by membranes, 20-times decrease of volume of N containing water, reuse options for impurities/nutrients

Nitrate from explosive residues in water

- Goal: Decrease the content of nitrate in discharge/reuse water, nitrate concentrate for usage
- TYPKI result: 95% purified water with low impurity content, defined concepts for nitrates

Nitrate from NO_x scrubber water

- Goal: Minimise discharges, increase the concentration of nitrate for usage
- TYPKI result with synthetic water: 87% rejection of nitrate in purified water with 1-pass RO, 5-times concentrated nitrate having 16-times less sulphate

N-products from biogas production

Cooperation with University of Verona/Prof. Nicola Frison

- Goal: Removal of fine suspended solids (SS) as a pre-treatment, recovery of N as nitrate from reject water using less chemicals
- Result so far: Ammonium has been biologically converted to nitrite which is chemically vaporized to NOx gas and absorbed in oxidizing solution

TYPKI - Resource-wise nutrient recovery from industrial wastewater

At VTT we develop feasible solutions for treatment of industrial wastewater and recovery of nutrients hence answering the challenge of ZLD.

The on-going TYPKI project coordinated by VTT promotes recovery and refinement concepts of nutrients into industrial chemicals, construction materials, and fertilizer additives.

wastewater purification produces clean water but also

Nutrient sources:

concentrates to be utilized or safely deposited

Recovery and refinement: precipitation, adsorption, membranes, electrochemistry, evaporation

For use: reuse water, alternative process chemicals, adhesives for cementation, and fertilizer additives

Impact: Less nutrient discharge, increased nutrient self-sufficiency and better business Schedule: Feb 2021-Jan

2023

Budget: EUR 1.03 million Financer: Business Finland

and the

participants

Participants: VTT, University of

Oulu, Tapojärvi, Aquaminerals,

BioSO4, Brightplus,

Industrial Water,

Agnico Eagle,

Gasum.

Hannukainen

Mining, Valmet,

Yara Suomi

Info: hanna.kyllonen@vtt.fi
www.typki.fi

beyond the obvious

hanna.kyllonen@vtt.fi